Refine Your Search

Topic

Search Results

Standard

DIESEL SMOKE MEASUREMENT PROCEDURE

1988-09-01
HISTORICAL
J35_198809
The recommended practice applies to the dynamometer test procedure which can be used to assess the smoke emission characteristics of vehicular diesel engines. In particular, this procedure describes the smoke test cycle, equipment and instrumentation, instrument checks, chart reading and calculation for evaluation of an engine’s transient smoke emission characteristic. In addition, this procedure offers guidelines to be used in establishing correlation between full flow in-line and end-of-line opacimeters. Since the type of test described here is transient in nature, a fast responding full flow opacimeter is required for the smoke measurements. Slow responding or sampling, or both, type instruments must not be used since they typically have excessive and variable response delays and do not provide an accurate measurement of an engine’s transient smoke characteristics.
Standard

Diesel Smoke Measurement Procedure

1995-03-01
HISTORICAL
J35_199503
This SAE Recommended Practice applies to the dynamometer test procedure which can be used to assess the smoke emission characteristics of vehicular diesel engines. In particular, this procedure describes the smoke test cycle, equipment and instrumentation, instrument checks, chart reading, and calculation for evaluation of an engine's transient smoke emission characteristic. In addition, this procedure offers guidelines to be used in establishing correlation between full flow in-line and end-of-line opacimeters. Since the type of test described here is transient in nature, a fast responding full flow opacimeter is required for the smoke measurements. Slow responding or sampling, or both, type instruments must not be used since they typically have excessive and variable response delays and do not provide an accurate measurement of an engine's transient smoke characteristics.
Standard

MEDIUM- AND HEAVY-DUTY TRUCK CONVERTER/MUFFLER CONFIGURATION

1993-02-19
HISTORICAL
J1642_199302
This SAE Draft Technical Report is intended to document the technical consensus of the current design state of converter/mufflers for heavy-duty emission classification diesel vehicle applications. This will maximize standardization and promote interchangeability of parts from different manufacturers.
Standard

Radial Lip Seal Torque—Measurement Method and Results

2000-10-02
HISTORICAL
J1971_200010
This SAE Recommended Practice provides information on procedures, tools, and fixtures useful in determining frictional torque measurement of radial lip oil seals. Information on the effect of various operational environments on oil seals are discussed and a means of calculation of power consumption of seals is provided.
Standard

Guide to the Application and Use of Passenger Car Air-Conditioning Compressor Face Seals

2002-10-25
CURRENT
J1954_200210
This SAE Recommended Practice is intended as a guide in the usage of mechanical face seals for the passenger car air-conditioning compressor application. Included in this guide is a compilation of present practices; for example, a description of various type seals, material combinations, design data, tolerances, drawing format, qualification testing, inspection information, and quality control data. The terminology used is recommended to promote uniformity in seal nomenclature.
Standard

Determination of Sulfur Compounds in Automotive Exhaust

2002-10-21
CURRENT
J1280_200210
This SAE Information Report deals exclusively with the determination of sulfur compounds in automotive exhaust. Engine operating cycles and interpretation of results are not covered. Methods described in detail are those that have been or are being used by various laboratories. None are specifically recommended as superior to others. Since intensive measurement of automotive sulfur compounds is a relatively new activity, methods and practices have changed rapidly. Some methods are more experimental than others and are so noted in the test.
Standard

Impact of Alternative Fuels on Engine Test and Reporting Procedures

2011-09-06
CURRENT
J1515_201109
The guidelines in this SAE Information Report are directed at laboratory engine dynamometer test procedures with alternative fuels, and they are applicable to four-stroke and two-stroke cycle spark ignition (SI) and diesel (CI) engines (naturally aspirated or pressure charged, with or without charge air cooling). A brief overview of investigations with some alternative fuels can be found in SAE J1297. Other SAE documents covering vehicle, engine, or component testing may be affected by use of alternative fuels. Some of the documents that may be affected can be found in Appendix A. Guidelines are provided for the engine power test code (SAE J1349) in Appendix D. The principles of these guidelines may apply to other procedures and codes, but the effects have not been investigated. The report is organized into four technical sections, each dealing with an important aspect of testing or reporting of results when using alternative fuels.
Standard

IMPACT OF ALTERNATIVE FUELS ON ENGINE TEST AND REPORTING PROCEDURES

1995-06-28
HISTORICAL
J1515_199506
The guidelines in this SAE Information Report are directed at laboratory engine dynamometer test procedures with alternative fuels, and they are applicable to four-stroke and two-stroke cycle spark ignition (SI) and diesel (CI) engines (naturally aspirated or pressure charged, with or without charge air cooling). A brief overview of investigations with some alternative fuels can be found in SAE J1297. Other SAE documents covering vehicle, engine, or component testing may be affected by use of alternative fuels. Some of the documents that may be affected can be found in Appendix A. Guidelines are provided for the engine power test code (SAE J1349) in Appendix D. The principles of these guidelines may apply to other procedures and codes, but the effects have not been investigated. The report is organized into four technical sections, each dealing with an important aspect of testing or reporting of results when using alternative fuels.
Standard

SPARK ARRESTER TEST PROCEDURE FOR MEDIUM SIZE ENGINES

1991-01-01
HISTORICAL
J350_199101
This SAE Recommended Practice establishes equipment and procedures for testing spark arresters used on medium-size, single-position internal combustion engines, normally used in transportable, stationary, and vehicular applications, such as highway trucks, agricultural tractors, industrial tractors, other mobile equipment, and motorcycles. This document provides two methods of testing (laboratory testing and engine testing) which may be used to evaluate a spark arrester. It also includes special requirements for screen type devices and an endurance test procedure for screen type spark arresters.
Standard

Spark Arrester Test Carbon

2013-03-26
HISTORICAL
J997_201303
This SAE Standard establishes physical properties required of SAE Coarse Test Carbon and SAE Fine Test Carbon and establishes test methods to ensure that these requirements are met.
Standard

Multiposition Small Engine Exhaust System Fire Ignition Suppression

2012-10-23
HISTORICAL
J335_201210
This SAE Recommended Practice establishes equipment and test procedures for determining the performance of spark arrester exhaust systems of multiposition small engines (<19 kW) used in portable applications, including hand-held, hand-guided, and backpack mounted devices. It is not applicable to spark arresters used in vehicles or stationary equipment.
Standard

CHEMICAL METHODS FOR THE MEASUREMENT OF NONREGULATED DIESEL EMISSIONS

1989-10-01
HISTORICAL
J1936_198910
This document encompasses analytical procedures for measuring nonregulated diesel exhaust emissions. Methods are recommended for the measurement of aldehydes and carbonyl compounds, sulfates and the characterization of diesel exhaust particulates. Informational methods are presented for the measurement of polycyclic aromatic hydrocarbons (PAH) in diesel exhaust particulate samples. The procedures are based on current proven chemical and engineering practices. However, it should be noted that the procedures are subject to change to keep pace with established experience and technology.
X